WangCubic#
- class cuqi.testproblem.WangCubic(noise_std=1, prior=None, data=None)#
Two parameters and one observation cubic test problem.
- Parameters:
noise_std (scalar) – Standard deviation of the noise
prior (cuqi.distribution.Distribution) – Distribution of the prior
data (scalar) – Observed data
Notes
Based on Section 3.3.2 in Wang (2015): Z. Wang, “An Optimization Based Algorithm for Bayesian Inference”. Master thesis. MIT. 2015 https://dspace.mit.edu/bitstream/handle/1721.1/98815/921147308-MIT.pdf?sequence=1&isAllowed=y
- __init__(noise_std=1, prior=None, data=None)#
Methods
MAP
([disp, x0])Compute the Maximum A Posteriori (MAP) estimate of the posterior.
ML
([disp, x0])Compute the Maximum Likelihood (ML) estimate of the posterior.
UQ
([Ns, Nb, percent, exact, experimental])Run an Uncertainty Quantification (UQ) analysis on the Bayesian problem and provide a summary of the results.
__init__
([noise_std, prior, data])Method that returns the model, the data and additional information to be used in formulating the Bayesian problem.
sample_posterior
(Ns[, Nb, callback, ...])Sample the posterior.
sample_prior
(Ns[, callback])Sample the prior distribution.
set_data
(**kwargs)Set the data of the problem.
Attributes
Extract the observed data from likelihood
The likelihood function.
Extract the cuqi model from likelihood.
Create posterior distribution from likelihood and prior.
The prior distribution