Distribution#
- class cuqi.distribution.Distribution(name=None, geometry=None, is_symmetric=None)#
Abstract Base Class for Distributions.
Handles functionality for pdf evaluation, sampling, geometries and conditioning.
- Parameters:
name (str, default None) – Name of distribution.
geometry (Geometry, default _DefaultGeometry (or None)) – Geometry of distribution.
is_symmetric (bool, default None) – Indicator if distribution is symmetric.
Notes
A distribution can be conditional if one or more mutable variables are unspecified. A mutable variable can be unspecified in one of two ways:
The variable is set to None.
The variable is set to a callable function with non-default arguments.
The conditioning variables of a conditional distribution are then defined to be the mutable variable itself (in case 1) or the parameters to the callable function (in case 2).
- __init__(name=None, geometry=None, is_symmetric=None)#
Initialize the core properties of the distribution.
- Parameters:
name (str, default None) – Name of distribution.
geometry (Geometry, default _DefaultGeometry (or None)) – Geometry of distribution.
is_symmetric (bool, default None) – Indicator if distribution is symmetric.
Methods
__init__
([name, geometry, is_symmetric])Initialize the core properties of the distribution.
Disable finite difference approximation for logd gradient.
enable_FD
([epsilon])Enable finite difference approximation for logd gradient.
Return the conditioning variables of this distribution (if any).
Return any public variable that is mutable (attribute or property) except those in the ignore_vars list
Returns the names of the parameters that the density can be evaluated at or conditioned on.
gradient
(*args, **kwargs)Returns the gradient of the log density at x.
logd
(*args, **kwargs)Evaluate the un-normalized log density function of the distribution.
logpdf
(x)Evaluate the log probability density function of the distribution.
pdf
(x)Evaluate the log probability density function of the distribution.
sample
([N])Sample from the distribution.
to_likelihood
(data)Convert conditional distribution to a likelihood function given observed data
Attributes
Returns True if finite difference approximation of the logd gradient is enabled.
Spacing for the finite difference approximation of the logd gradient.
Return the dimension of the distribution based on the geometry.
Return the geometry of the distribution.
Returns True if instance (self) is a conditional distribution.
Name of the random variable associated with the density.