Abel1D#

class cuqi.testproblem.Abel1D(dim=128, endpoint=1, field_type=None, field_params=None, KL_map=None, KL_imap=None, SNR=100)#

1D Abel test problem. 1D model of rotationally symmetric computed tomography.

Parameters:
  • dim (int) – size of the grid for the problem

  • endpoint (float) – Location of end-point of grid.

  • field_type (str or cuqi.geometry.Geometry) – Field type of domain.

  • KL_map (lambda function) – Mapping used to modify field.

  • KL_imap (lambda function) – Inverse of KL map.

  • SNR (int) – Signal-to-noise ratio

data#

Generated (noisy) data

Type:

ndarray

model#

Abel 1D model

Type:

cuqi.model.LinearModel

prior#

Distribution of the prior

Type:

cuqi.distribution.Distribution

likelihood#

Likelihood function

Type:

cuqi.likelihood.Likelihood

exactSolution#

Exact solution (ground truth)

Type:

ndarray

exactData#

Noise free data

Type:

ndarray

MAP()#

Compute MAP estimate of posterior. NB: Requires prior to be defined.

sample_posterior(Ns)#

Sample Ns samples of the posterior. NB: Requires prior to be defined.

__init__(dim=128, endpoint=1, field_type=None, field_params=None, KL_map=None, KL_imap=None, SNR=100)#

Methods

MAP([disp, x0])

Compute the Maximum A Posteriori (MAP) estimate of the posterior.

ML([disp, x0])

Compute the Maximum Likelihood (ML) estimate of the posterior.

UQ([Ns, Nb, percent, exact, experimental])

Run an Uncertainty Quantification (UQ) analysis on the Bayesian problem and provide a summary of the results.

__init__([dim, endpoint, field_type, ...])

get_components()

Method that returns the model, the data and additional information to be used in formulating the Bayesian problem.

sample_posterior(Ns[, Nb, callback, ...])

Sample the posterior.

sample_prior(Ns[, callback])

Sample the prior distribution.

set_data(**kwargs)

Set the data of the problem.

Attributes

data

Extract the observed data from likelihood

likelihood

The likelihood function.

model

Extract the cuqi model from likelihood.

posterior

Create posterior distribution from likelihood and prior.

prior

The prior distribution