from cuqi.distribution import JointDistribution, Posterior
from cuqi.sampler import Sampler
from cuqi.samples import Samples, JointSamples
from typing import Dict
import numpy as np
import warnings
try:
from tqdm import tqdm
except ImportError:
def tqdm(iterable, **kwargs):
warnings.warn("Module mcmc: tqdm not found. Install tqdm to get sampling progress.")
return iterable
# Not subclassed from Sampler as Gibbs handles multiple samplers and samples multiple parameters
# Similar approach as for JointDistribution
[docs]
class HybridGibbs:
"""
Hybrid Gibbs sampler for sampling a joint distribution.
Gibbs sampling samples the variables of the distribution sequentially,
one variable at a time. When a variable represents a random vector, the
whole vector is sampled simultaneously.
The sampling of each variable is done by sampling from the conditional
distribution of that variable given the values of the other variables.
This is often a very efficient way of sampling from a joint distribution
if the conditional distributions are easy to sample from.
Hybrid Gibbs sampler is a generalization of the Gibbs sampler where the
conditional distributions are sampled using different MCMC samplers.
When the conditionals are sampled exactly, the samples from the Gibbs
sampler converge to the joint distribution. See e.g.
Gelman et al. "Bayesian Data Analysis" (2014), Third Edition
for more details.
In each Gibbs step, the corresponding sampler state and history are stored,
then the sampler is reinitialized. After reinitialization, the sampler state
and history are set back to the stored values. This ensures preserving the
statefulness of the samplers.
The order in which the conditionals are sampled is the order of the
variables in the sampling strategy, unless a different sampling order
is specified by the parameter `scan_order`
Parameters
----------
target : cuqi.distribution.JointDistribution
Target distribution to sample from.
sampling_strategy : dict
Dictionary of sampling strategies for each variable.
Keys are variable names.
Values are sampler objects.
num_sampling_steps : dict, *optional*
Dictionary of number of sampling steps for each variable.
The sampling steps are defined as the number of times the sampler
will call its step method in each Gibbs step.
Default is 1 for all variables.
scan_order : list or str, *optional*
Order in which the conditional distributions are sampled.
If set to "random", use a random ordering at each step.
If not specified, it will be the order in the sampling_strategy.
callback : callable, optional
A function that will be called after each sampling step. It can be useful for monitoring the sampler during sampling.
The function should take three arguments: the sampler object, the index of the current sampling step, the total number of requested samples. The last two arguments are integers. An example of the callback function signature is: `callback(sampler, sample_index, num_of_samples)`.
Example
-------
.. code-block:: python
import cuqi
import numpy as np
# Model and data
A, y_obs, probinfo = cuqi.testproblem.Deconvolution1D(phantom='sinc').get_components()
n = A.domain_dim
# Define distributions
d = cuqi.distribution.Gamma(1, 1e-4)
l = cuqi.distribution.Gamma(1, 1e-4)
x = cuqi.distribution.GMRF(np.zeros(n), lambda d: d)
y = cuqi.distribution.Gaussian(A, lambda l: 1/l)
# Combine into a joint distribution and create posterior
joint = cuqi.distribution.JointDistribution(d, l, x, y)
posterior = joint(y=y_obs)
# Define sampling strategy
sampling_strategy = {
'x': cuqi.sampler.LinearRTO(maxit=15),
'd': cuqi.sampler.Conjugate(),
'l': cuqi.sampler.Conjugate(),
}
# Define Gibbs sampler
sampler = cuqi.sampler.HybridGibbs(posterior, sampling_strategy)
# Run sampler
sampler.warmup(200)
sampler.sample(1000)
# Get samples removing burn-in
samples = sampler.get_samples().burnthin(200)
# Plot results
samples['x'].plot_ci(exact=probinfo.exactSolution)
samples['d'].plot_trace(figsize=(8,2))
samples['l'].plot_trace(figsize=(8,2))
"""
[docs]
def __init__(self, target: JointDistribution, sampling_strategy: Dict[str, Sampler], num_sampling_steps: Dict[str, int] = None, scan_order = None, callback=None):
# Store target and allow conditioning to reduce to a single density
self.target = target() # Create a copy of target distribution (to avoid modifying the original)
# Store sampler instances (again as a copy to avoid modifying the original)
self.samplers = sampling_strategy.copy()
# Store number of sampling steps for each parameter
self.num_sampling_steps = num_sampling_steps
# Store parameter names
self.par_names = self.target.get_parameter_names()
# Store the scan order
self._scan_order = scan_order
# Check that the parameters of the target align with the sampling_strategy and scan_order
if set(self.par_names) != set(self.scan_order):
raise ValueError("Parameter names in JointDistribution do not equal the names in the scan order.")
# Initialize sampler (after target is set)
self._initialize()
# Set the callback function
self.callback = callback
def _initialize(self):
""" Initialize sampler """
# Initial points
self.current_samples = self._get_initial_points()
# Initialize sampling steps
self._initialize_num_sampling_steps()
# Allocate samples
self._allocate_samples()
# Set targets
self._set_targets()
# Initialize the samplers
self._initialize_samplers()
# Validate all targets for samplers.
self.validate_targets()
@property
def scan_order(self):
if self._scan_order is None:
return list(self.samplers.keys())
if self._scan_order == "random":
arr = list(self.samplers.keys())
np.random.shuffle(arr) # Shuffle works in-place
return arr
return self._scan_order
# ------------ Public methods ------------
[docs]
def validate_targets(self):
""" Validate each of the conditional targets used in the Gibbs steps """
if not isinstance(self.target, (JointDistribution, Posterior)):
raise ValueError('Target distribution must be a JointDistribution or Posterior.')
for sampler in self.samplers.values():
sampler.validate_target()
[docs]
def sample(self, Ns) -> 'HybridGibbs':
""" Sample from the joint distribution using Gibbs sampling
Parameters
----------
Ns : int
The number of samples to draw.
"""
for idx in tqdm(range(Ns), "Sample: "):
self.step()
self._store_samples()
# Call callback function if specified
self._call_callback(idx, Ns)
return self
[docs]
def warmup(self, Nb, tune_freq=0.1) -> 'HybridGibbs':
""" Warmup (tune) the samplers in the Gibbs sampling scheme
Parameters
----------
Nb : int
The number of samples to draw during warmup.
tune_freq : float, optional
Frequency of tuning the samplers. Tuning is performed every tune_freq*Nb steps.
"""
tune_interval = max(int(tune_freq * Nb), 1)
for idx in tqdm(range(Nb), "Warmup: "):
self.step()
# Tune the sampler at tuning intervals (matching behavior of Sampler class)
if (idx + 1) % tune_interval == 0:
self.tune(tune_interval, idx // tune_interval)
self._store_samples()
# Call callback function if specified
self._call_callback(idx, Nb)
return self
[docs]
def get_samples(self) -> Dict[str, Samples]:
samples_object = JointSamples()
for par_name in self.par_names:
samples_array = np.array(self.samples[par_name]).T
samples_object[par_name] = Samples(samples_array, self.target.get_density(par_name).geometry)
return samples_object
[docs]
def step(self):
""" Sequentially go through all parameters and sample them conditionally on each other """
# Sample from each conditional distribution
for par_name in self.scan_order:
# Set target for current parameter
self._set_target(par_name)
# Get sampler
sampler = self.samplers[par_name]
# Instead of simply changing the target of the sampler, we reinitialize it.
# This is to ensure that all internal variables are set to match the new target.
# To return the sampler to the old state and history, we first extract the state and history
# before reinitializing the sampler and then set the state and history back to the sampler
# Extract state and history from sampler
sampler_state = sampler.get_state()
sampler_history = sampler.get_history()
# Reinitialize sampler
sampler.reinitialize()
# Set state and history back to sampler
sampler.set_state(sampler_state)
sampler.set_history(sampler_history)
# Allow for multiple sampling steps in each Gibbs step
for _ in range(self.num_sampling_steps[par_name]):
# Sampling step
acc = sampler.step()
# Store acceptance rate in sampler (matching behavior of Sampler class Sample method)
sampler._acc.append(acc)
# Extract samples (Ensure even 1-dimensional samples are 1D arrays)
if isinstance(sampler.current_point, np.ndarray):
self.current_samples[par_name] = sampler.current_point.reshape(-1)
else:
self.current_samples[par_name] = sampler.current_point
[docs]
def tune(self, skip_len, update_count):
""" Run a single tuning step on each of the samplers in the Gibbs sampling scheme
Parameters
----------
skip_len : int
Defines the number of steps in between tuning (i.e. the tuning interval).
update_count : int
The number of times tuning has been performed. Can be used for internal bookkeeping.
"""
for par_name in self.par_names:
self.samplers[par_name].tune(skip_len=skip_len, update_count=update_count)
# ------------ Private methods ------------
def _call_callback(self, sample_index, num_of_samples):
""" Calls the callback function. Assumes input is sampler, sample index, and total number of samples """
if self.callback is not None:
self.callback(self, sample_index, num_of_samples)
def _initialize_samplers(self):
""" Initialize samplers """
for sampler in self.samplers.values():
sampler.initialize()
def _initialize_num_sampling_steps(self):
""" Initialize the number of sampling steps for each sampler. Defaults to 1 if not set by user """
if self.num_sampling_steps is None:
self.num_sampling_steps = {par_name: 1 for par_name in self.par_names}
for par_name in self.par_names:
if par_name not in self.num_sampling_steps:
self.num_sampling_steps[par_name] = 1
def _set_targets(self):
""" Set targets for all samplers using the current samples """
par_names = self.par_names
for par_name in par_names:
self._set_target(par_name)
def _set_target(self, par_name):
""" Set target conditional distribution for a single parameter using the current samples """
# Get all other conditional parameters other than the current parameter and update the target
# This defines - from a joint p(x,y,z) - the conditional distribution p(x|y,z) or p(y|x,z) or p(z|x,y)
conditional_params = {par_name_: self.current_samples[par_name_] for par_name_ in self.par_names if par_name_ != par_name}
self.samplers[par_name].target = self.target(**conditional_params)
def _allocate_samples(self):
""" Allocate memory for samples """
samples = {}
for par_name in self.par_names:
samples[par_name] = []
self.samples = samples
def _get_initial_points(self):
""" Get initial points for each parameter """
initial_points = {}
for par_name in self.par_names:
sampler = self.samplers[par_name]
if sampler.initial_point is None:
sampler.initial_point = sampler._get_default_initial_point(self.target.get_density(par_name).dim)
initial_points[par_name] = sampler.initial_point
return initial_points
def _store_samples(self):
""" Store current samples at index i of samples dict """
for par_name in self.par_names:
self.samples[par_name].append(self.current_samples[par_name])
def __repr__(self):
""" Return a string representation of the sampler. """
msg = f"Sampler: {self.__class__.__name__} \n"
if self.target is None:
msg += f" Target: None \n"
else:
msg += f" Target: \n \t {self.target} \n\n"
for key, value in zip(self.samplers.keys(), self.samplers.values()):
msg += f" Variable '{key}' with {value} \n"
return msg